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Kernel Machines

o Kernel machines, the most popular of which being the Support
Vector Machine (SVM), are a powerful option for a variety of learning
tasks.

o This is particularly true when linear models would otherwise fail.
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SVM Example

Logistic SVM (RBF Kernel)
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The Kernel Trick

The kernel trick allows us to apply a linear model in a higher-dimensional
space without explicitly computing the transformation.

o Define a feature map ¢ : R? — H, mapping inputs into a
high-dimensional (possibly infinite) space.

@ Compute inner products in H using a kernel function
k:RIxRY—R:

k(x,x') = (8(x), o(x))n

e Avoid explicit computation of ¢(x) by directly working with
k(x,x").
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Computational Limitations

Consider the Gram matrix:
k(xi,x1) ... k(x1,xn)
K =
k(xnyx1) <. k(Xn,Xn)
Computational Cost:
Computing K requires O(n?) kernel evaluations.
Memory complexity is O(n?).

Inverting K (e.g., in Gaussian Processes) requires O(n®) operations.

For large values of n, we run into scaling issues.
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What Can We Do?

e What if we could approximate the kernel k(x, x’) using some explicit
feature map?
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What Can We Do?

e What if we could approximate the kernel k(x, x’) using some explicit
feature map?

@ What if we could do this in a way that is both performant and
scalable?
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What Can We Do?

e What if we could approximate the kernel k(x, x’) using some explicit
feature map?

@ What if we could do this in a way that is both performant and
scalable?

@ Solution: Random Fourier Features
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Some Context

e Random Fourier Features (RFFs) were first introduced by Benjamin
Recht and Ali Rahimi in their seminal work, Random Features for
Large-Scale Kernel Machines (2007).

@ This work won them the Test of Time Award at NeurlPS in 2017

Harris Bubalo Random Fourier Features February 25, 2025



Prerequisite: Fourier Transform

@ The Fourier transform converts a function from the time domain to
frequency domain.

Definition (Fourier Transform)

For a function f(x), the continuous Fourier transform F(§) is the
complex-valued function:

F(&) = /oo f(x)e & dx

— 00
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Prerequisite: Shift-Invariant Kernels

o A kernel k(x,y) is shift-invariant (also called stationary) if it depends
only on the difference of its arguments, rather than their absolute

positions:
k(x,y) = k(x = y) = k(9)

where § =x —y

, Ix = yI?
RBF): &k =
Gaussian ( ) (x,y) =exp ( 202
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Bochner's Theorem

@ Bochner's theorem characterizes shift-invariant positive definite
kernels.

Theorem (Bochner's)

A continuous, shift-invariant kernel k(x,y) = k(x — y) on R9 is positive
definite if and only if it is the Fourier transform of a non-negative measure.

@ With this, such kernels can be written as...
k(x—y) = /p(w)ei“’T(XY)dw

@ ...where p(w) is a probability measure/distribution.

@ This theorem comes from classic harmonic analysis.
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Time to Approximate

Let’'s expand more on the previous form.
k(x,y) = k(x =)
= /p(w)ein(X_y)dw

= Eufexp(iw” (x — y))]
Note that this means that exp(iw’ (x — y)) is an unbiased estimator of our
kernel k(x, y) when w is drawn from p. We can then use a Monte Carlo
approximation to approximate the above expectation with lowered
variance:

k(x,y) = Eulexp(iw” (x — ))]

1 M

2> exp(i] (x — )
j=1

=f(x)"f(y)*

Q
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Let's Get Real

Now, we note that both our kernel k(x,y) and our probability distribution
p(w) are real-valued, so we can do the following using Euler's formula:

exp(iw” (x = y)) = cos(w (x — y)) —isin(w (x — y))
COS( T(x =)

We can then define a function z,(x) where...

w ~ p(w)
b ~ Uniform(0, 27)
2,(x) = V2 cos(w ' x + b)
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Some Trigonometry

Why are we doing this?

Using the fact that 2 cos(a) cos(b) = cos(a + b) + cos(a — b), we can show
the following:

E.[zo(x)zo(y)] = Eu[V2cos(wTx + b)V2cos(w Ty + b)]

= E, [cos(w ™ (x + y) + 2b)] + E,Jcos(w (x — y))]
= Efcos(w ™ (x — y))]
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Putting it Together

We are now ready to define the RFF map we were aiming for all along!
Let z: RY — RM be defined as

ﬁzuu (x)
z(x) = '

ﬁsz(x)
With this, we have...

( Z(y) Z ij Zw

J

= Z 2 cos(wJ-Tx + bj) cos(ijy + bj)
j=1

~ E,[cos(w ™ (x — y))]

= k(x,y)
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The Result

There we have it! We have found a randomized map z : R — RM where

k(x,x') = ($(x), o(x))n =~ 2(x) "2(x)

For values of M < n, working with RFFs has complexity O(nM), a nice
improvement on what we had initially with the kernel trick!
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The RFF Algorithm

Working with RFFs looks like the following:
@ Decide which shift-invariant kernel you would like to use for your
purposes. (e.g. Gaussian)
@ Generate M by d random samples of w ~ p(w) and M random
samples of b ~ Uniform(0, 27).

© Compute the mapped dataset Z = \/% cos(XWT + B).

XlT W1T b1 by ... by

X=|: W= ": B=|: + =
Xr;r W& by by ... by
nxd m x d nxM
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Where are we Sampling From?

@ You may be wondering what probability distribution p(w) represents.

@ Note that it is not something we can choose arbitrarily; it is tied
directly to the chosen kernel k(x — y) via Bochner's Theorem.

Kernel Name k(A) p(w)

Gaussian e_@% (27?)_%8_@%
Laplacian e~ I1Alh 11, m
Cauchy IRz e 1ol
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RFFs In Action

o First, let's verify that RFFs are indeed a good approximation of the
true kernel in practice.

e Using a matplotlib visualization of each approximate matrix ZZ T, we
see that they get pretty close to the exact RBF kernel as we increase
M.

RBF kernel zz7,M=100 2z7, M=1000
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How do RFFs perform?

@ On a dataset with 100000 points and 20 features, how do RFFs
compare to the true kernel?

@ Generated data with make_classification in sklearn and performed a
75/25 train test split.

@ RBF SVM took about 33 seconds to train, 13 to test, and achieved
an accuracy score of 0.889.

@ RFF method (M = 800) took 10 seconds to train, 0.06 seconds to
test, and achieved an accuracy score of 0.878.

@ So using RFFs resulted in a similar accuracy score with a much faster
running time!
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Kernel Ridge Regression
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What Else Can RFFs Do?

@ We have seen that RFFs can be used to obtain similar results to
kernel methods in a fraction of the time.

@ But is it also possible that RFF results can be better than results
from unmapped data?

@ As it turns out, it is!
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Representing Images With an MLP

Say we'd like to use a Multi-Layered Perceptron (MLP) to represent an

image, taking in as input pixel coordinates (x, y) and outputting color
values (r, g, b).

° R
@
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High Frequency Signals in Low Dimensional Domains

@ The MLP will struggle to capture high-frequency details in the image,
such as sharp edges and fine textures.

@ This is because it is operating in a low-dimensional domain, i.e. 2D
coordinates.

@ The phenomenon where NNs learn low-frequency components of a
function faster than high-frequency components is called spectral
bias.

MLP output Supervision image
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Representing Higher Frequency Functions Using RFFs

@ How do we fix this? By using RFFs, of course!

@ Let's change our MLP architecture. Instead of simply inputting the
low-dimensional coordinates directly into the MLP, we can first apply
a Fourier feature map.

@ This allows the MLP to operate in a transformed space where
high-frequency information is already present.

Fourier feature
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MLP Results With Fourier Features

PSNR
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Why Does This Work?

o Consider kernel regression, where a function f(x) is approximated as:
n
f(x) = Z wik(x, x;)
i=1

@ It can be shown that training a neural network with gradient descent
becomes the same as performing kernel regression as the width of
each layer approaches infinity.

@ More specifically, it converges over the course of training to the kernel
regression solution obtained when using a special kernel called the
neural tangent kernel.

@ Fourier feature mapping lets us change the width of the NTK, which
in turn changes how well the MLP is able to learn different frequency
components.
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What is in Store for RFFs?

@ We have shown that Random Fourier features can be a powerful and
highly scalable tool.
o Effectively approximates kernels and achieves great accuracy
o Reduces the computational complexity of kernel methods from O(n?)
to O(nM) for M < n
o Enriches NNs by enabling them to learn high-frequency information
@ However, there is still so much more to learn and discover regarding
Fourier features.
o Learned Fourier Features
o Extending to different kernel types (asymmetric, non-stationary, etc.)
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